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Marginal dimensionalities for long-range energy transfer 

By ILYA RIPS and JOSHUA JORTNER 
Department of Chemistry, Tel Aviv University, 69978 Tel Aviv, 

Israel 

The averaging-out of off-diagonal disorder effects in long-range, incoherent 
electronic energy transfer (EET) results in marginal dimensionalities for which, and 
beyond which, short-time transport ceases to be dispersive. For EET induced by 
multipolar interactions of the order s, the marginal dimensionalities are d T, = s - 2 
and d , * = s  for the mean-square displacement and for the initial site survival 
probability, respectively, manifesting the interrogation of distinct aspects of spatial 
fluctuations. 

1. Introduction 
Incoherent, strong-scattering, electronic energy transfer (EET) in an impurity band 

of substitutionally disordered materials (Sakun 1972, Haan and Zwanzig 1978, Klafter 
and Silbey 1980, Blumen et al. 1980, Godzik and Jortner 1980, Gochanour et al. 1979, 
Loring et al. 1984) falls into a broad class of phenomena in the areas of chemical physics 
and of ill-condensed matter physics, e.g., particle transfer with random rates, spin waves 
in random systems and tight-binding disordered fermion systems (Alexander et al. 
1981). The effects of the off-diagonal randomness on EET are manifested by the 
occurrence of a dispersive diffusion process (Haan and Zwanzig 1978, Klafter and 
Silbey 1980, Blumen et al. 1980, Godzik and Jortner 1980, Gochanour et al. 1979, 
Loring et al. 1984) in a close analogy to dispersive electron mobility in amorphous 
semiconductors. EET induced by isotropic multipolar interactions, which is character- 
ized by the transition probability 

W(r)=z-’(R,,/r)” (1) 
where r is the inter-impurity distance, z is the excited lifetime (being subsequently taken 
as unity) and R ,  is the characteristic transfer radius, and is expected to interrogate off- 
diagonal disorder by long-range transfer. In the context of the manifestation of disorder 
effects on electronic structure and transport, it is interesting to inquire under what 
circumstances are disorder effects eroded by long-range interactions. As far as diagonal 
disorder effects are concerned, it is well known that the Anderson localization does not 
occur for interactions falling off as r -”  (n  < 3) (Anderson 1958). We have approached the 
problem of the erosion of off-diagonal disorder effects by long-range interactions in 
EET by establishing the existence of marginal dimensionalities for EET for which and 
beyond which the transport ceases to be dispersive, becoming purely diffusive at short 
times. Our approach bears an analogy to the existence of marginal dimensionalities, 
d *, for the critical threshold exponents in magnetism (Ma 1976) and in percolation 
(Kirkpatrick 1979), such as that for a dimensionality, d,  exceeding d *, the critical 
exponents assume their mean-field values. The marginal dimensionalities determined 
here for the observables characterizing EET provide the signature of the averaging-out 
of all spatial fluctuations for long-range transport. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



170 I. Rips and Jortner 

The existence of marginal dimensionalities for EET induced by multipolar 
interactions is required to amend some apparent non-physical characteristics of the 
observables exhibited at high dimensionalities for a fixed value of s. Haan and Zwanzig 
(1 978) have demonstrated, using an elegant scaling argument, that for transport 
induced by dipole-dipole interactions (s = 6) and d = 3, the mean square displacement 
(MSD) ( r2 ( t ) )  at short times behaves as pt5l6, where p is the impurity concentration. 
This scaling argument has been extended (Blumen et al. 1980) for the case of general 
values of d and s, resulting in 

m 

n = O  
( r2 ( t ) )  = pt(d+Z)/s C AJ"~'"~" 

A cursory examination of equation (2) reveals that for d > (s - 2) the motion becomes 
partially coherent, as is evident from the power of the first term in t which exceeds unity; 
for d = (2s - 2) the motion is coherent, i.e., ( r2( t ) )  cc tZ;  and for d > (2s - 2) it is even 
accelerated. These conclusions are unacceptable as the starting point for the derivation 
of equation (2) is the Pauli master equation, where all coherent effects are eroded. One is 
therefore led to the inevitable conclusion that equation (2) is inapplicable for d > s - 2. 
Similar difficulties are encountered in the critical scrutiny of the initial site survival 
probability (ISSP), P(t). Using the Haan-Zwanzig argument (Haan and Zwanzig 1978, 
Blumen et al. 1980), one gets 

W 

P(t)= 1 - 1 C,pnt"d/s 
n = l  

(3) 

For small values of p and t this function is often approximated (Blumen et al. 1980) by 
the single exponential 

P(t) = exp { - ap@} (4) 
For d > s the ISSP, equation (4), exhibits a super-exponential decay, a behaviour which 
is acceptable in the case of a physical catastrophe but it is by no means applicable for 
the case of conventional transport considered herein. 

2. Marginal dimensionalities for ( f i ( t ) )  and fit) 
The way out of these difficulties rests on the definition of marginal dimensionalities 

for ( r2( t ) )  and for P(t). We shall utilize the self-consistent diagrammatic method 
(SCDM) of Gochanour et al. (1979) with the two-body approximation for the self- 
energy. The SCDM rests on the diagrammatic expansion of the Fourier-Laplace 
transform of the configurationally averaged Green's function (GF) 

c(k; E )  = dt exp (- E L )  C exp (ikr)G(r; t )  Sb r 
(5)  

where G(r; t )  is the GF  determining the configurationally averaged probability P(r, t )  
obtained from the solution of the master equation, i.e., 

P(r, t)= G(r, t)P(r, 0)dr. s 
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Marginal dimensionalities for long-range energy transfer 171 

The topological reduction of the diagrammatic expansion results in the following 
Dyson-type equation for the G F  (Gochanour et al. 1979) 

G(k; E )  = Gd(&)/{ 1 - pGd(&) 2 (k Gd(&))} (6) 
where Gd(&) is the Laplace transform of the ISSP and E(k; Gd(&)) is the self-energy. Gd(&) 
is determined from the self-consistency equation (Gochanour et al. 1979) 

Cd(&)= I/{&+ r(0; Cd(&))} (7) 

which ensures probability conservation. Systematic approximations maintaining 
unitarity can now be introduced. In the simplest two-body approximation we shall 
adopt (Gochanour et al. 1979) 

W(r) Z(’)(k; Cd(&)) = dr exp (ikr) s 1 + 2Gd(&)W(r) 

The probability conservation constraint for the problem at hand bears an analogy to 
the unitarity of the S-matrix and the introduction of unitarity relations for the decay of 
elementary particles (Lipkin 1973). It is important to emphasize that the SCDM results, 
which rest on equation (8), are exact for the term linear in the concentration and in this 
context they are not associated with the two-body approximation. To demonstrate this 
cardinal point, we note that the Laplace transform of the MSD can be expressed in the 
form (Gochanour et al. 1979) 

The n-body approximation to the self-energy is exact up to (and including) the terms of 
the order p”- ’ .  Accordingly, 

2 (k; Gd(&)) = p 2“’(k; Gd(&)) + O(p2) (10) 
From equations (9) and (10) it is apparent that the MSD is exact in the first order in p. 
The Laplace transform of P(t) can be analysed in terms of the density expansion of the 
SCDM (Knoester and Van Himbergen 1984). The Gd(&) is determined self-consistently 
within the n-body approximation, which was shown to be exact up to the order (n - 1) 
in the concentration. Therefore, in our case 

(1 1) 
1 

Gd(&) = - + a(&)p + O(p2) 
& 

We conclude that the results of the two-body version of the SCDM are exact to the first 
order in concentration both for the MSD and for the ISSP. This is sufficient for our 
purpose. 

The self-consisting equation, equation (7), can now be expressed in the form 

1 
Cd(&) = 

&+I(& s) 

where 

dr Id- ‘(R0/r)” s 1 + 2Cd(&)(R0/r)” 
z(d; s)=pSd 

s d  is the surface of the d-dimensional hypersphere, a is the lower cut-off distance, which 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



172 I .  Rips and Jortner 

is of the order of lattice constant, and R ,  is the upper cut-off distance, which is of the 
order of the crystal size. 

The MSD can be expressed from equation (9) as 

We proceed to the evaluation of the integral I(d; s), equation (13), which determines the 
observables. For d < s, the lower limit can be taken to be equal to zero, while the upper 
limit is extended to infinity without affecting the final result (Blumen et al. 1980): 

dcK(d; s) 
[2Gd(&)]' -d's 

Z(d; s)= 

where c is the number of molecules within the sphere of radius R,(c = pS,Rd,/d) and 

(1 6) 
71 

K(d; s)= 
s sin (nd/s) 

It is easy to show that the standard scaling results (Haan and Zwanzig 1978, Blumen 
et al. 1980) are recovered by substituting equation (15) into equations (12) and (14). For 
d 2 s one has to account properly for the integration limits in equation (13), which now 
assumes the form 

The Z(d; s) ( d > s )  integral exhibits interesting size effects for finite systems. A notable 
feature of equation (17) is that the final expression is independent of the function Gd(&). 
From equations (14) and (17), we get 

dI(d; s) 
(d + 2) 

(r"t)) =- Rt t  + O(p2), d 2 s - 2 

and the MSD exhibits a linear time dependence. Next, we utilize equations (12) and (17) 
to obtain 

P(t) = 1 - I(d; s)t + O(p2)  (19) 
so that for short times 

P(t)-exp { -Z(& s)t} 

and the ISSP reveals an exponential decay. 

Equations (18) and (20) establish the existence of marginal dimensionalities for the 
observables which characterize long-range EET. For d 2 s - 2, equation (2) is no longer 
valid and should be replaced by the conventional diffusive behaviour ( r2(t ) )  at. Thus, 
d i*, = s - 2 is the marginal dimensionality for the MSD. Similarly, for d > s, the ISSP at 
short times is characterized by the single exponential decay, equation (20). Accordingly, 
d = s is the marginal dimensionality for the ISSP. The existence of different marginal 
dimensionalities d and d for the problem of long-range EET originates from the 
interrogation of different aspects of local disorder by these two observables. The ISSP 
represents a local property, which is very sensitive to the local disorder, while the MSD 
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Marginal dimensionalities for long-range energy transfer 173 

constitutes a global property where some of the disorder effects are partially averaged 
out. Accordingly, a higher marginal dimensionality is required for the complete 
averaging-out of disorder effects on the ISSP than for the MSD. 

From the foregoing analysis, we conclude that: 

Each of the observables specifying EET is characterized by a well defined time 
exponent for any given dimensionality. 
These exponents exhibit a systematic variation with changing d saturating at 
dad:  and d 2 d x .  

(3) For d exceeding d and d x, conventional energy diffusion is exhibited.? 
(4) Different observables are characterized by distinct marginal dimensionalities 

for EET, in contrast to the percolation problem (Kirkpatrick 1979), where 
d* = 6 constitutes the universal marginal dimensionality. 

A complementary criterion for the existence of marginal dimensionalities for EET 
rests on the divergence of the spatial moments of the transition rates 

00 

M ,  = dr rpW(r), 

with p being real and positive. Provided that M ,  diverge for p a p * ,  then p* is the 
marginal dimensionality for the ISSP, and (p* - 2) is the marginal dimensionality for 
the diffusion. On the other hand, when all the moments are finite, marginal 
dimensionalities do not exist. This is the case for EET induced by exchange interactions 
when the transition rates decay exponentially with distance. Under these circum- 
stances, short-time dispersive diffusion will prevail for all dimensionalities. 
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t A more profound analysis of long-range EET in high-dimensional (d > 3) spaces may 
require the modification of the Coulomb law. The electrostatic potential, @, should be taken as 
the solution of the Poisson equation in a d-dimensional space V2@ = -(d - 2)S,a, where c is the 
charge density and S ,  is the surface of the d-dimensional hypersphere, assuming the form 
@(r)ocr- (d-  ’). Dipole4ipole transition rates in a d-dimensional space fall off with distance as 
r -2d ,  so that for multipolar interactions s 2 2 d .  Accordingly, in such a scheme which allows for 
the dimensional modification of the electrostatic interaction potential, EET induced by the 
multipolar coupling is always dispersive for any dimensionality. Thus, marginal dimensionalities 
will then exist only for interactions which are oflonger range than those ofthe dipoldipole type. 
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